
Md. Wasi-ur- Rahman, David Ozog, and James Dinan



2

Legal Disclaimers

OpenSHMEM Workshop 2017 
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others.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at 

intel.com, or from the OEM or retailer. No computer system can be absolutely secure.  Tests document performance of components on a particular test, in 

specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate 
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Intel, the Intel logo, Xeon and Xeon Phi and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be 
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Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 

change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your 

contemplated purchases, including the performance of that product when combined with other products. For more complete information 

visit www.intel.com/benchmarks.

© 2017 Intel Corporation. 
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Introduction and Motivation

OpenSHMEM Workshop 2017 

• PGAS programming models provide seamless ability to perform one-sided remote 
memory operations

‒ No explicit participation from the remote Processing Element (PE)

• For on-node PEs, such operations can result in performance overheads due to 

‒ Multiple copies of the same data within a shared memory address space

‒ Synchronization mechanisms associated with distributed memory access patterns

‒ Memory replication cost of single process multiple data programming

• OpenSHMEM community is actively investigating library extensions to better support 
node-level optimizations
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Introduction and Motivation

OpenSHMEM Workshop 2017 

• OpenSHMEM Context extension provides thread-safety by isolating communication 
streams

‒ Optimizes communication performance through overlap with each other

• Paris OpenSHMEM

‒ High performance communication engine based on the Boost library   

• Application developers may still opt for evolutionary approach for data sharing

‒ Most OpenSHMEM implementations support a query function that provide a direct 
pointer to the remotely accessible memory of a remote PE 
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Problem Statement
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How can application developers avoid/minimize on-node 
communications with the information provided 

by the built-in OpenSHMEM routines? 
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Challenges
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• Current implementations of shmem_ptr provide limited information

• Most OpenSHMEM implementations do not provide an easy way to identify the local 
PEs and the data object references

• Leader based collective implementation can be beneficial for many applications, for 
which no abstraction is present

• Tuning to identify the optimum number of local leaders for each collective operation 
needs to be investigated 
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Existing Works
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• Welch et al. introduced teams and spaces concepts for gathering on-node groups of 
PEs

• Hoefler et al. introduced MPI+MPI to enable inter-process communication through 
shared memory windows

• Cray-SHMEM provides APIs to discover local PEs and building a team through 
shmem_local_ptr and shmem_team_translate_pe
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Design of shnode

OpenSHMEM Workshop 2017 

• Utilizing the built-in shmem_ptr routine, we design 
shnode

• Purpose is to provide application developers a way to 
minimize on-node communication 

• Stores the data object references for other PEs 
located on the same node

• Subsequent remote memory operations can be 
substituted with direct load and stores

• For each on-node team, the lowest rank PE is 
assigned as the leader

Application

shnode

OpenSHMEM 
Implementation 
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Proposed fundamental APIs for shnode
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int shnode_init();/*initialization*/

int shnode_create_team (void *data);        /*team creation*/

int shnode_add_data (void *data);

/*addition of data objects*/

int shnode_is_team_member (int rem_pe);      /*member check*/

void *shnode_get_member_remote_addr (int rem_pe, void *data);

/*retrieval of memory address*/

int shnode_am_team_leader();                /*leader check*/

int shnode_finalize();                           /*destroy*/

Used with shmem_ptr to populate the 
on_node PEs’ table

Additional data can be added to the table using 
shmem_ptr for the team PEs 

Retrieves the address from the stored team table 
created by shnode_create_team
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Data Structure for shnode
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• Simple data structure mapping each PE 
to a list of data object references

• A second list is maintained that maps 
the desired object to the location it is 
stored on the first map list

• References to PEs on other nodes and 
self are kept empty

• This data structure is populated through 
shnode_create_team which is 
invoked only once at the beginning

PE 0 PE 12
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Example all-to-all program utilizing shnode
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shmem_init();

shnode_init();

data1 = shmem_malloc (size1);

shnode_create_team (data1); 

for (rem_pe = 0; rem_pe < npes; 

rem_pe++) {

if (shnode_is_team_member

(rem_pe)) {      

void *ptr = shnode_get

_member_remote_addr(rem_pe, 

data1);

memcpy(…);

} else {

shmem_put (dest, src, 

nelems, rem_pe);

}

}

shnode_finalize(); 

shmem_finalize();   

shmem_init();

…

data1 = shmem_malloc (size1);

…

for (rem_pe = 0; rem_pe < npes; 

rem_pe++) {

shmem_put(dest, src, 

nelems, rem_pe);

}

…

shmem_finalize();              
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Designing helper routines for Collectives

• Each collective operation can be divided into three sub-
tasks based on the teams formed by shnode

• The local PEs transmit their data to the 
corresponding leaders

• A collective operation strided over all the leaders 
across the nodes takes place

• Leaders transmit the collected value to the 
corresponding local PEs 

• A power-of-two number of processes per node is 
assumed to be launched for the current 
implementation

OpenSHMEM Workshop 2017 
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Example int_sum_to_all utilizing shnode
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If (leader == ME) {

for (all members in team) {

//copy data from src_ptr to the 

self source

}

shmem_barrier(…);    //strided over 

shmem_int_sum_to_all(…); //all the 

//leaders

for (all members in team) {

//copy data from self destination 

to dst_ptr

}

}

shmem_barrier_all();

shmem_init();

…

//shmem_int_sum_to_all (…);

shnode_int_sum_to_all (…);

…

shmem_finalize();              
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Designing better overlapping with communication
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• shnode provides the opportunity to the application developers to replace the 
remote memory operations with direct load/store

• If applicable, pointer swapping can bring further benefits as it removes all memory to 
memory data transfer

• Another alternative is to schedule the inter-node and intra-node data transfers 
separately

• Scheduling the intra-node memory operations at the end may ensure better 
overlapping between computation and inter-node transfers

• Re-structuring of the communication and computation can be beneficial with 
shnode
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Experimental Setup

• NERSC system, Cori

– Cray XC40 

– Intel® Xeon Phi™ 7250 (Knights Landing), 68 cores/node @ 1.4 GHz

– 96 GB DDR4 memory

• shnode was implemented on top of Cray SHMEM v7.5.5

OpenSHMEM Workshop 2017 
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Profiling shnode APIs

• Profiling 4 APIs on Two KNL nodes

• PEs per node is varied from 1 to 64

• Average execution time is taken across all PEs
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• init, create_team, and finalize take less 
than 0.1 seconds for 128 PEs

• shnode implementation can reduce the query 
operation cost by 50% compared to the default 
approach
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Evaluation with OSU micro-benchmark
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• Put and Get performance evaluation with 2 PEs

• Modified OSU benchmarks to evaluate with 
shnode

• For small message sizes, both shnode-put and 
shnode-get can perform 3-4.6x better; for large 
message sizes, benefit is around 1.5-2.35x
compared to the default 

OpenSHMEM Workshop 2017 
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Evaluation of Collectives (int_sum_to_all)
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• Analyze the impact of multiple leaders on 4 nodes with 
PEs per leader from 1 to 64

• Evaluated with 128 (2 nodes) to 8,192 (128 nodes) PEs 
• 10MB buffer used as the source data; averaged over 10 

iterations

• Multiple leaders/node achieve better 
performance compared to the default; 8 PEs for 
each leader provides optimum

• shnode provides 4.87x benefit compared to the 
default implementation for 8,192 PEs
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Evaluation of Collectives (fcollect)
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• Analyze the impact of multiple leaders on 4 nodes with 
PEs per leader from 1 to 64

• Evaluated with 128 (2 nodes) to 8,192 (128 nodes) PEs 
• 10MB buffer used as the source data; averaged over 10 

iterations

• 2 PEs for each leader provides optimum; more 
PEs per leader introduces overhead

• shnode provides 2x benefit compared to the 
default implementation for 8,192 PEs
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Evaluation of ISx
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• Strong and weak scale experiments for ISx on 4 nodes 
with PEs varying from 8 to 256

• 1.5 billion items to sort for strong scale; for weak scale, 
the number of items per PE is 33 million

• Node-local transfers are separated for the 
SHMEM+shnode-CUST version of ISx

• Without customized communication, shnode provides 
little benefit (~5%) compared to the SHMEM version

• With customized communication pattern, shnode
provides 1.5 - 2x benefit for both strong and weak 
scaling
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Future Work

• Collective operations with any number of PEs per node

• Enabling/Disabling shnode features through configuration variables within 
OpenSHMEM
– Collectives

– RMA functions

– Other helper query routines

• Exploring other applications to extract benefits from shnode

– Re-ordering to achieve communication avoidance for stencil algorithm

• Exploring performance improvement potential for MapReduce applications
– For shuffle and reduce sensitive applications, shnode may provide further benefits based on the data 

transmission and reduce function characteristics

OpenSHMEM Workshop 2017 
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Conclusion

• shnode supports the formation of node-local teams within which applications can 
do shared memory operations

• We present a set of APIs for shnode that can be used to create teams as well as 
nominating single/multiple leader processes 

• Number of leaders has a significant impact on collective performance

• shnode APIs has less overhead compared to the default available APIs

• For int_sum_to_all, shnode can bring 4.87x benefit compared to the default 
approach by using multiple leaders

• By re-ordering the computation and communication phases, ISx can be improved by 
1.5x using shnode

OpenSHMEM Workshop 2017 




